TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC TB62726AN, TB62726AF

16-bit constant current LED driver with operation supply of 3.3 V to 5 V

The TB62726A series are comprised of constant-current drivers designed for LEDs and LED displays. The output current value can be set using an external resistor. As a result, all outputs will have virtually the same current levels. This driver incorporates 16 -bit constant-current outputs, a 16-bit shift register, a 16 -bit latch and 16 -bit AND-gate circuit. These drivers have been designed using the Bi-CMOS process.

Feature

*Output current capability and the number of output:
$90 \mathrm{~mA} \times 16$ outputs
*Constant current range : 2 to 90 mA
*Application output voltage :
0.7 V (output current 2 to 80 mA)
0.4 V (output current 2 to 40 mA)
*For anode common LED
*Input signal voltage level :
3.3V-5.0V CMOS level (schmitt trigger input)
*Power supply voltage range VDD $=3.0$ to 5.5 V
*Muximum output terminal voltage 17V

P-SSOP24-300-1.00B
*Serial and parallel data transfer rate 20 MHz (min., Cascade Connection)
*Operation temperature range topr $=-40$ to 85 degrees
*Package: AN type ---P-SDIP-300-1.78
AF type - - P-SSOP24-300-1.00B
*Current accuracy (not used dot-current correction.)

Output voltage	Current accuracy		Output current
	between bits	between ICs	
$>=0.4 \mathrm{~V}$	$+/-4 \%$	$+/-12 \%$	2 to 40 mA
		2 to 90 mA	

Package and pin layout (Top view)

Warnings : Short-circuiting an output terminal to GND or to the power supply terminal may broken the device.
Please take care when wiring the output terminals, the power supply terminal and the GND terminals.

Block Diagram

Truth Table

CLOCK	LATCH	ENABLE	SERIAL-IN	OUT0 --- OUT7 --- OUT15	SERIAL-OUT
Positive edge	H	L	Dn	Dn --- Dn-7 --- Dn-15	Dn-15
Positive edge	L	L	Dn+1	No Change	Dn-14
Positive edge	H	L	Dn+2	Dn+2 --- Dn-5 --- Dn-13	Dn-13
Negative edge	X	L	Dn+3	Dn+2 --- Dn-5 -- Dn-13	Dn-13
Negative edge	X	H	Dn+3	Off	Dn-13

Note 1: OUT0~OUT15=ON when Dn=H ; OUT0~OUT15=OFF when Dn=L
In order to ensure that the level of the power supply voltage is correct, an external resistor have to connected between R-EXT and GND.

TOSHIBA

Timing diagram

Warning :

Latch circuit is leveled-latch circuit. Be careful because it is not triggered-latch circuit.

Note 2 :

The latches circuit holds data by pulling the LATCH terminal Low. And, when LATCH terminal is a High-level, latch circuit doesn't hold data, and it passes from thelnput to the output. When ENABLE terminal is Low-level, output terminal OUTO~OUT15 respond to the data, and on \& off does.
And, when ENABLE terminal is a High-level, it offs with the output terminal regardless of the data.

Terminal description

Pin No.	Pin Name	
1	GND	GND terminal for control logic
2	SERIAL-IN	Input terminal for serial data for data shift register
3	CLOCK	Input terminal for clock for data shift on rising edge
4	$\overline{\text { LATCH }}$	Input terminal for data strobe When the LATCH=High-level, data is no latched. When ithe LATCH=Low-level, data is latched.
$5 \sim 20$	$\overline{\text { OUT 0 ~ 15 }}$	Constant-current output terminals
21	$\overline{\text { ENABLE }}$	Input terminal for output enable. All outputs (OUT0 ~ OUT15) are turned off, when the ENABLE=High-level. And are turned on, when the ENABLE=Low-level.
22	SERIAL-OUT	Output terminal for serial data input on SERIAL-IN terminal 23
24	R-EXT	Input terminal used to connect an external resistor. This regulated the output current.

Equivalent circuit of inputs and output

1. ENABLE Terminal

2. CLOCK,SERIAL-IN Terminal

VDD

CLOCK,
SERIAL - IN
GND

2. $\overline{\text { LATCH }}$ Terminal

4. SERIAL-OUT Terminal

5. OUTO ~ 15 Terminal

GND

Absolute maximum ratings

Characteristics	Symbol	Rating	Unit
Supply Voltage	VDD	+6	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.2 to VDD +0.2	
Output Current	lout	+90	$\mathrm{mA} / \mathrm{ch}$
Output Voltage	Vout	-0.2 to 17	V
Power Dissipation	$\mathrm{P}_{\mathrm{d}} 1$	AN type : 1.25(Free air), 1.78(On PCB)	W
	$\mathrm{P}_{\mathrm{d}} 2$	AF type : 0.83(Free air), 1.00(On PCB)	
Thermal Resistance	$\mathrm{R}_{\mathrm{th}(\mathrm{za})} 1$	AN type : 104(Free air), 70(On PCB)	degree/W
	$\mathrm{R}_{\mathrm{th}(\mathrm{za})} 2$	AF type : 140(Free air), 120(On PCB)	
Operating Temperature	Topr	-40 to 85	degree
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	

Note 3: AN-type: Powers dissipation is derated by $14.28 \mathrm{~mW} /$ degree if device is mounted on PCB and ambient temperature is above 25 degree.
FN-type: Powers dissipation is derated by $6.67 \mathrm{~mW} /$ degree if device is mounted on PCB and ambient temperature is above 25 degrees.
With devide monuted on glass-epoxy PCB of less than $40 \% \mathrm{Cu}$ and of dimensions $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$.

Recommended operating condition (Topr $=-40 \sim 85$ degree, unless otherwise noted.)

Characteristics	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage	$V_{D D}$	-	3	-	5.5	V
Output Voltage	Vout(On)	-	-	0.7	4	V
Output Current	lout	Each DC 1 Circuit	2	-	80	$\mathrm{mA} / \mathrm{ch}$
	IOH	SERIAL-OUT	-	-	-1	mA
	loL		-	-	1	
Input Voltage	V_{H}	-	0.7VDD	-	VDD +0.15	V
	VIL		-0.15	-	0.3xVDD	
Clock Frequency	flck	Cascade Connected	-	-	20	MHz
LATCH Pulse Width	$\mathrm{tw}_{\text {LATCH }}$		50	-	-	ns
CLOCK Pulse Width	$\mathrm{t}_{\text {w CLOCK }}$		25	-	-	
ENABLE Pulse Width When the pulse of the Low level is inputted to	$\mathrm{t}_{\mathrm{w} \text { enable }}$	Upper lout=20mA	2000	-	-	
the ENABLE terminal held in the H level.		Lower lout=20 mA	3000	-	-	
Setup Time	t setup1	-	10	-	-	
for CLOCK Terminal	t setup 1		10	-	-	
Hold Time for CLOCK Terminal	t hold		50	-	-	
Setup Time for /LATCH Terminal	t SETUP2					

Note 4: When the pulse of the "L" level is inputted to the ENABLE terminal held in the " H " level.

Electrical characteristics (VDD=3V to 5.5 V , Topr=25degree unless otherwise noted.)

Characteristics	Symbol	Condition		Min	Typ	Max	Unit
Supply voltage	$V_{D D}$	Normal operation		3.0	-	5.5	V
Output current	lout1	$\begin{gathered} \text { VOUT }=0.4 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V} \end{gathered}$	$\mathrm{R}_{\text {EXT }}=$ 490 ohm	31.96	36.20	40.54	mA
	lout2			31.59	35.90	40.20	
	lout3	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=3.3 \mathrm{~V}$	$\begin{gathered} \mathrm{R}_{\text {EXT }}= \\ 250 \text { ohm } \end{gathered}$	63.63	72.30	80.97	
	lout4	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V}$		62.75	71.30	79.95	
Output current error between bits	diout1	$\begin{gathered} \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \\ \mathrm{R}_{\text {EXT }}=490 \mathrm{ohm} \end{gathered}$	All output ON	.	+/-1	+/-	\%
	diout2	$V_{\text {OUt }}=0.4 \mathrm{~V}$, $R_{\text {EXT }}=250$ ohm			+/-1	+	
Output leakage Current Input voltage	loz	Vout $=15 \mathrm{~V}$		-	-	1	$\mu \mathrm{A}$
Input voltage	V_{IN}			0.7VDD	-	VDD	V
		-		GND	-	0.3VDD	
SOUT terminal Voltage	VoL	$\mathrm{loL}=+1 \mathrm{~mA}, \mathrm{Vdd}=3.3 \mathrm{~V}$		-	-	0.3	V
		$\mathrm{loL}=+1 \mathrm{~mA}, \mathrm{Vdd}=5 \mathrm{~V}$		-	-	0.3	
	Vor	$\mathrm{l}_{\text {OH }}=-1 \mathrm{~mA}, \mathrm{Vdd}=3.3 \mathrm{~V}$		3	-	-	
		$\mathrm{l}_{\mathrm{OH}}=+1 \mathrm{~mA}, \mathrm{Vdd}=5 \mathrm{~V}$		4.7	-	-	
Output current supply voltage regulation	\%/VDD	When V_{DD} is changed 3 V to 5.5 V		-	-1	-5	\%/V
Pull up resistor	$\mathrm{R}_{\text {(UP) }}$	ENABLE terminal		115	230	460	Ohm
Pull down resistor	$\mathrm{R}_{\text {(Down) }}$	LATCH terminal					
Supply current	$\mathrm{I}_{\text {D (OFF) }} 1$	$\mathrm{R}_{\text {EXT }}=$ Open, $\mathrm{V}_{\text {Out }}=15 \mathrm{~V}$		-	0.1	0.5	
	1 ld (OFF) ${ }^{2}$	$\mathrm{Rext}_{\text {Ex }}=490 \mathrm{hm}$ All	All output OFF,$V_{\text {OUt }}=15 \mathrm{~V}$	1	3.5	5	
	$\mathrm{I}_{\text {di(off }} 3$	$\mathrm{R}_{\text {EXT }}=250 \mathrm{hm}$		4	6	9	
	$\mathrm{IdD}(\mathrm{ON}) 1$	$R_{\text {EXT }}=4900 \mathrm{hm}$	output ON, OUT=0.7V	-	9	15	
		$\mathrm{Ta}=-40$ degree, Same as the avobe.		-	-	20	
	$\mathrm{Imd}_{\text {(on) }}{ }^{2}$	$\mathrm{R}_{\text {EXT }}=250 \mathrm{ohm} \quad$ All	output ON, $\text { оut }=0.7 \mathrm{~V}$	-	18	25	
		$\mathrm{T}_{\mathrm{a}}=-40 \mathrm{deg}$ Same as the	vobe.	-	-	40	

Switching characterictics (Topr=25degree, unless otherwise noted)

Characteristics	Symbol	Condition	Min	Typ	Max	Unit
Propagation delay	$\mathrm{tpLH}^{\text {1 }}$	CLK-OUTn, LATCH="H", ENABLE="L"	-	150	300	ns
	$\mathrm{t}_{\text {pLH }}$ 2	LATCH-OUTn, ENABLE="L"	-	140	300	
	$\mathrm{t}_{\text {pLH }}$	ENABLE-OUTn, LATCH="H"	-	140	300	
	$\mathrm{t}_{\mathrm{pLH}}$	CLK-SERIALOUT	3	6	-	
	$\mathrm{t}_{\mathrm{pLL}} 1$	CLK-OUTn, LATCH="H", ENABLE="L"	-	170	340	
	tpHL	LATCH-OUTn, ENABLE="L"	-	170	340	
	$\mathrm{t}_{\mathrm{pHL}} 3$	ENABLE-OUTn, LATCH="H"	-	170	340	
	$\mathrm{t}_{\mathrm{pLH}}$	CLK-SERIAL-OUT	4	7	-	
Output rise time	tor	Voltage waveform 10\%~90\%	40	85	150	
Output fall time	$\mathrm{t}_{\text {of }}$	Voltage waveform 90\% ~10\%	40	70	150	
Maximum CLK	t	When not on PCB	-	-	5	us
rise time	tr					
Maximum CLK fall time	$t_{\text {f }}$		-	-	5	

Condition : (Refer to test circuit)
Topr=25 degree, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{H}}=3.3 \mathrm{~V}$ and 5 V , $\mathrm{V}_{\text {Out }}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{R}_{\text {ExT }}=490 \mathrm{ohms}, \mathrm{V}_{\mathrm{L}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=60 \mathrm{ohms}, \mathrm{C}_{\mathrm{L}}=10.5 \mathrm{pF}$

Note 5 :
If the device is connected in a cascade and tr/ff for the waveform is large, it may not be possible to achieve the timing required for data transfer. Please consider the timings carefully.

Test circuit

Timing Waveform

2. CLOCK, SERIAL-IN , $\overline{\text { LATCH }}, \overline{\text { ENABLE }}, \overline{\text { OUTn }}$

CLOCK
SERIAL
$\overline{\text { LATCH }}$
LATCH
$\overline{\text { ENABLE }}$
3. OUTn

OUTn

Output current vs duty (LEDs turn on rate)

IOUT - Duty On PCB
Topr=55 degree

IOUT - Duty On PCB
Topr=85 degree

Application circuit (example 1) : The general composition in static lighting of LED.
More than $\operatorname{VLED}(\mathrm{V})>=\mathrm{Vf}$ (total max.) +0.7 is recommended with the following application circuit with the LED power supply VLED. r 1 :The setup resistance for the setup of output current of every IC.
r 2 :The variable resistance for the brightness control of every LED module.

Application circuit (example 2) : When the condition of VLED is VLED $>17 \mathrm{~V}$.
The unnecessary voltage is one effective technique as to making the voltage descend with the zenor diode.

Application circuit (example 3) : When the condition of VLED is $\mathrm{Vf}+0.7<\mathrm{VLED}<17 \mathrm{~V}$.

Note:
Operating is likely to become unstable due to the electromagnetic guidance of wiring and so on.
Recommend that it adjoins it and it is arranged so far as device and LED are possible.
Damage by the over-voltage is likely to be suffered in LED and the output by over-voltage's occurring due to the inductance between LEDs from the output terminal.
There is only one GND terminal in this device. When the inductance of the GND line, resistance element, and so on are big, it is likely to operate
faultily by the GND noise when output switchings by the circuit board pattern and wiring.
And, it is necessary for the REXT terminal to connect it in the GND line which became stable through the resistor.
Vibration is likely to occur for the output wave form when GND was unstable and capacity (beyond 50 pF) was added.
Therefore, be fully careful of the circuit board pattern layout and wiring from the controller.
This application circuit is a reference example, and it doesn't assure operating in all the conditions.
Be sure to carry out operating confirmation.
Thisdevice doesn't build in the protection circuit of over-voltage, over-current and over-temperature.
Carry it out on the control side when protection is necessary.
Device is likely to destroy it when it short-circuits between the output terminals to each power supply.
Be fully careful of output terminal, each power supply (VDD, VLED) and the design of the GND line.

Package dimmension P-SSOP24-150-0.635
SDIP24-P-300-1.78 単位:mm

単位: mm

The information contained herein is subject to change without notice.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patens or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within spacified operating ranges as set forth in the most recent products spacifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in the document may include products subject to foreign exchange and foreign trade control laws.
(C) 2000-2002 TOSHIBA CORPORATION ALL RIGHT Reserved

